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background

 

In patients with acute myeloid leukemia (AML), the presence or absence of recurrent
cytogenetic aberrations is used to identify the appropriate therapy. However, the current
classification system does not fully reflect the molecular heterogeneity of the disease,
and treatment stratification is difficult, especially for patients with intermediate-risk
AML with a normal karyotype.

 

methods

 

We used complementary-DNA microarrays to determine the levels of gene expression in
peripheral-blood samples or bone marrow samples from 116 adults with AML (includ-
ing 45 with a normal karyotype). We used unsupervised hierarchical clustering analysis
to identify molecular subgroups with distinct gene-expression signatures. Using a train-
ing set of samples from 59 patients, we applied a novel supervised learning algorithm
to devise a gene-expression–based clinical-outcome predictor, which we then tested us-
ing an independent validation group comprising the 57 remaining patients.

 

results

 

Unsupervised analysis identified new molecular subtypes of AML, including two prog-
nostically relevant subgroups in AML with a normal karyotype. Using the supervised
learning algorithm, we constructed an optimal 133-gene clinical-outcome predictor,
which accurately predicted overall survival among patients in the independent validation
group (P=0.006), including the subgroup of patients with AML with a normal karyotype
(P=0.046). In multivariate analysis, the gene-expression predictor was a strong inde-
pendent prognostic factor (odds ratio, 8.8; 95 percent confidence interval, 2.6 to 29.3;
P<0.001).

 

conclusions

 

The use of gene-expression profiling improves the molecular classification of adult AML.
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cute myeloid leukemia (aml) is the

 

most common acute leukemia in adults.
Chemotherapy induces a complete remis-

sion in 70 to 80 percent of younger patients (age,
16 to 60 years), but many of them have a relapse and
die of their disease. Myeloablative conditioning fol-
lowed by allogeneic stem-cell transplantation can
prevent relapse, but this approach is associated with
a high treatment-related mortality.

 

1

 

 Therefore, ac-
curate predictors of the clinical outcome are needed
to determine appropriate treatment for individual
patients.

Currently used prognostic indicators include age,
cytogenetic findings, the white-cell count, and the
presence or absence of an antecedent hematologic
disorder (e.g., myelodysplasia).

 

2

 

 Of these, cytoge-
netic findings represent the most powerful prog-
nostic factor.

 

3,4

 

 The karyotype can be used to clas-
sify patients as being at low risk (t(8;21), t(15;17), or
inv(16)), intermediate risk (e.g., a normal karyo-
type or t(9;11)), or high risk (e.g., inv(3), ¡5/del(5q),
¡7, or a complex karyotype [three or more aberra-
tions]).

 

3,5,6

 

 Nevertheless, there is substantial het-
erogeneity within these risk groups. Thirty-five to
50 percent of patients have a normal karyotype,

 

7

 

 but
molecular markers such as mutations in the fms-
like tyrosine kinase 3 (

 

FLT3

 

) gene

 

8,9

 

 and the mixed-
lineage leukemia (

 

MLL

 

) gene

 

10,11

 

 have allowed us to
begin to subdivide this large group. These markers
have been shown to predict the clinical outcome,
and they provide potential targets for molecular
therapies.

 

12

 

 Despite these successes, however, there
is no consensus as to the appropriate means of risk
stratification of patients with AML with a normal
karyotype. We therefore used DNA microarrays to
explore systematically the molecular variation un-
derlying the biologic and clinical heterogeneity in
AML, an approach that has provided insight into
diffuse large-B-cell lymphoma

 

13-15

 

 and childhood
acute lymphoblastic leukemia.

 

16,17

 

samples

 

The AML Study Group Ulm (Ulm, Germany) provid-
ed 65 peripheral-blood samples and 54 bone mar-
row specimens from 116 adult patients with AML.
Written informed consent was obtained from all pa-
tients, and the study was approved by the institu-
tional review board of each participating center.
After providing samples, the patients began one of
two treatment protocols (AML HD98A and AML

HD98B, described in detail in Supplementary Ap-
pendix 1, available with the full text of this article at
www.nejm.org) between February 1998 and No-
vember 2001 and received intensive induction and
consolidation therapy. The median duration of fol-
low-up was 334 days (611 days for survivors); dur-
ing this period, 68 of the 116 patients died and 34
of the 79 patients who had a complete remission re-
lapsed. Conventional cytogenetic banding, fluores-
cence in situ hybridization, and analysis of 

 

MLL

 

 and

 

FLT3

 

 for mutations were performed as previously
described,

 

8,11,18

 

 at the central reference laboratory
for cytogenetic and molecular diagnostics of the
AML Study Group Ulm. Detailed clinical, cytogenet-
ic, and molecular cytogenetic information is avail-
able at the Gene Expression Omnibus (www.ncbi.
nlm.nih.gov/geo/, accession number GSE425).

 

gene-expression profiling

 

We isolated total RNA from stored, frozen mono-
nuclear AML-cell pellets using Trizol reagent (In-
vitrogen) according to the manufacturer’s recom-
mendations and assessed RNA quality by means
of gel electrophoresis. We hybridized Cy5-labeled
total RNA from AML samples, along with Cy3-
labeled common reference messenger RNA (mRNA)
(pooled from 11 cell lines), on microarrays of com-
plementary DNA (cDNA) (manufactured by the
Stanford Functional Genomics Facility) that con-
tain 39,711 nonredundant cDNA clones, represent-
ing 26,260 unique UniGene clusters (i.e., genes).
Details of cDNA-microarray fabrication, prehy-
bridization array processing, and RNA-sample
labeling and hybridization have been described
elsewhere.

 

19,20

 

 We imaged arrays using an Axon
GenePix 4000B scanner (Axon Instruments), deter-
mined fluorescence ratios (ratio of the specimen val-
ue to the reference value) using the GenePix soft-
ware, and entered data into a data base (Stanford
Microarray Database)

 

21

 

 for subsequent analysis.
The complete-microarray data set is also available
at the Gene Expression Omnibus (www.ncbi.nlm.
nih.gov/geo/, accession number GSE425).

 

statistical analysis

 

We normalized fluorescence ratios by mean-center-
ing genes for each array and then mean-centering
each gene across all arrays within each of three array
print runs, to minimize potential print-run–specific
bias.

 

22

 

 For all subsequent analyses, we included only
the 6283 genes on the microarray whose expression
was both well measured and highly variable among

a

methods
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samples (a list is available at www.ncbi.nlm.nih.gov/
geo/). We defined well-measured genes as genes
that had a ratio of signal intensity to background
noise of more than 2, for either the Cy5-labeled AML
sample or the Cy3-labeled reference sample, in at
least 75 percent of the AML samples hybridized. We
defined genes that were highly variably expressed as
genes whose expression was higher or lower by a
factor of at least 4 than the average expression of all
AML samples in at least two AML samples. For hi-
erarchical clustering, we applied two-way (genes-
against-samples) average-linkage hierarchical clus-
tering

 

19

 

 and used TreeView to visualize the results.

 

19

 

Principal component analysis

 

23

 

 was performed with
the use of the R software package (available at www.
r-project.org). For two-class and multiclass super-
vised analyses, we used the significance analysis of
microarrays (SAM) method,

 

24

 

 which uses a modi-
fied t-test statistic (or F-test statistic for multiclass
analysis), with sample-label permutations to evalu-

ate statistical significance. The chi-square test, Stu-
dent’s t-test, and Kaplan–Meier survival analysis
were performed with the use of WinStat software
(R. Fitch Software). Multivariate proportional-haz-
ards analysis was performed with the use of the
R software package.

For outcome prediction, we randomly divided
samples that had been prestratified to ensure that a
similar number of samples in each group were from
patients who had died into a separate training set
(59 samples) and test set (57 samples); in the case
of paired peripheral-blood and bone marrow sam-
ples (obtained from three patients), only 1 sample
was used. In the training set, we used the SAM meth-
od, which involved a modified Cox proportional-
hazards maximum-likelihood score, to identify
genes whose expression correlated with the dura-
tion of survival. We used this set of SAM genes in
k-means cluster analysis to identify two subgroups
of samples in the training set. We used Kaplan–

 

Glossary

Centroid:

 

 The average expression profile across a set of genes; the centroid corresponds to the center of a cluster.

 

Chromosomal abnormalities
t(8;21):

 

 One of the commonest cytogenetic abnormalities in AML; produces a hybrid gene by fusing 

 

AML1

 

 on the 
long arm of chromosome 21 with 

 

ETO

 

 on the long arm of chromosome 8.

 

inv(16):

 

 Inversion of a segment of chromosome 16 that produces the 

 

CBF

 

b

 

-MYH11

 

 fusion.

 

t(15;17):

 

 Reciprocal translocation of genetic material between the long arms of chromosomes 15 and 17 that produc-
es the 

 

PML-RAR

 

a

 

 fusion gene, typical of acute promyelocytic leukemia.

 

11q23:

 

 A chromosomal region that becomes rearranged with various partner chromosomal regions in diverse forms 
of leukemia. Usually involves the 

 

MLL

 

 gene whose multifunctional product regulates gene expression.

 

t(6;9):

 

 A rare translocation often found in young patients and sometimes associated with basophilia.

 

¡7(q):

 

 Loss of the long arm of chromosome 7 (monosomy 7).

 

French–American–British (FAB) classification:

 

 An internationally agreed-on method of classifying acute leukemia by 
morphologic means. There are eight subtypes, ranging from M0 (myeloblasts) to M7 (megakaryoblasts).

 

Gene-clustering technique:

 

 A method of grouping genes with similar patterns of expression. These clusters often consist 
of genes that are mechanistically related (e.g., genes of a particular metabolic cycle).

 

Hierarchical clustering:

 

 A computational method that groups genes (or samples) into small clusters and then groups 
these clusters into increasingly higher level clusters. As a result, a dendrogram (i.e., tree) of connectivity emerges.

 

Microarray profiling, also called DNA-microarray or gene expression profiling: 

 

Determination of the level of expression 
of thousands of genes simultaneously by using, for example, a robotically spotted microarray of complementary 
DNAs or oligonucleotides. Messenger RNA extracted from the test tissue or cells and labeled with a fluorescent 
dye is tested for its ability to hybridize to the spotted nucleic acid.

 

Omniviz Correlation View:

 

 A commercial multifunctional statistical package used for analysis of microarrays. It allows 
the visual representation of genes that behave similarly in a given disease.

 

Pearson’s correlation coefficient:

 

 A statistical measure of the strength of the linear relationship between variables.

 

Prediction analysis of microarrays (PAM):

 

 A statistical technique that identifies a subgroup of genes that best character-
izes a predefined class and uses this gene set to predict the class of new samples.

 

Probe set:

 

 A group of 10 to 20 oligonucleotides; each set corresponds to one gene.

 

Significance analysis of microarrays (SAM):

 

 A statistical method used in microarray analyses that calculates a score for 
each gene and thus identifies genes with a statistically significant association with an outcome variable such as 
survival.

 

Supervised analysis:

 

 An analysis of the results of microarray profiling that takes external factors into account.

 

Unsupervised analysis:

 

 An analysis of the results of microarray profiling that does not take external factors such as sur-
vival or clinical signs into account.

 

10-Fold cross-validation:

 

 A validation method that works as follows: the model is fitted on 90 percent of the samples, and 
the class of the remaining 10 percent is then predicted. This procedure is repeated 10 times, with each part play-
ing the role of the test samples and the error of all 10 parts added together to compute the overall error. This error 
reflects the number of misclassified samples.
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Meier survival analysis to determine the prognostic
relevance of the two subgroups — and to assign
good-outcome and poor-outcome labels to each
subgroup — and the prediction analysis for mi-
croarrays method,

 

25

 

 using the “nearest shrunken
centroid” approach to identify a 10-fold cross-vali-
dated gene-expression predictor (analogous to the
leave-one-out method) for these cluster-defined out-
come classes. Taking into account both the P value
on the log-rank test and the cross-validation error
rate (see Supplementary Appendix 2, available with
the full text of this article at www.nejm.org), we
selected a set of 133 predictive genes (represented
by 149 cDNAs), which we used for all subsequent
analyses. We used cluster analysis

 

26

 

 or the nearest-
shrunken-centroid method

 

25

 

 to determine the prog-
nostic accuracy of outcome classes in the test set.

 

identification of classes

 

Our sample set included the most common cytoge-
netic subtypes of AML and reflected the spectrum
of cytogenetic aberrations in AML.

To explore the relationship among samples, as
well as the underlying patterns of gene expression,
we performed an unsupervised two-way, hierarchi-
cal cluster analysis

 

19

 

 using the 6283 genes whose
expression varied most across samples (Fig. 1A).
For patients for whom we had samples from both
peripheral blood and bone marrow, we found that
the expression profiles were highly correlated (Fig.
1B), as has been reported elsewhere.

 

17

 

 Of the cyto-
genetic groups, samples with t(15;17) had a highly
correlated pattern of expression, whereas samples
with t(8;21) or inv(16) were less well correlated, with
each group being divided into separate clusters (Fig.
1B). Interestingly, AML specimens with a normal
karyotype (as determined by conventional chromo-
some banding and fluorescence in situ hybridiza-
tion analysis) also segregated mainly into two dis-
tinct groups, each of which included a small number
of AML specimens from other classes (Fig. 2A).
These newly defined subgroups were identified with
the use of a variety of preclustering data-filtering cri-
teria (Supplementary Appendix 3, available with the
full text of this article at www.nejm.org) and were
also evident by means of principal-component
analysis

 

23

 

 (Fig. 2B), suggesting they represent ro-
bust classes.

To gain further insight into the importance of
these newly identified subtypes, we examined the

distribution of prognostically relevant clinical and
molecular genetic variables among samples (Fig.
2A). The two subclasses in which a normal karyo-
type predominated were similar with respect to the
patients’ sex, age, white-cell count, serum lactate
dehydrogenase level, and presence or absence of
an antecedent hematologic disorder (described at
www.ncbi.nlm.nih.gov/geo/). 

 

FLT3

 

 aberrations were
more prevalent in group I (P=0.005 by the chi-
square test), and French–American–British (FAB)
morphologic subtype M1 or M2 was significantly
more common in group I than in group II, whereas
FAB subtype M4 or M5 was more common in group
II (P=0.013 by the chi-square test). It is noteworthy
that Kaplan–Meier analysis identified a significant
difference in overall survival between the two sub-
classes (P=0.009 by the log-rank test) (Fig. 2C).
Within our sample set, no significant differences in
clinical and laboratory variables were identified be-
tween gene-expression subgroups for either t(8;21)
or inv(16).

 

biologic insights

 

Within the unsupervised hierarchical cluster, we
found gene-expression signatures characterizing
known cytogenetic groups, as well as newly identi-
fied subtypes (Fig. 1). Group signatures could also
be identified with the use of supervised analyses,
such as the SAM method.

 

24

 

 In both supervised and
unsupervised analyses, gene-expression signatures
were identified for groups with t(15;17), t(8;21),
inv(16), 11q23 aberrations, del(7q)/¡7, a normal

results

 

Figure 1 (facing page). Hierarchical Cluster Analysis 
of Diagnostic AML Samples.

 

Panel A shows a thumbnail overview of the two-way 
(genes against samples) hierarchical cluster of 119 num-
bered samples of AML (columns) and 6283 genes with 
variable levels of expression (rows). Mean-centered 
ratios of gene expression are depicted by a log-trans-
formed (on a base 2 scale) pseudocolor scale. Gray areas 
indicate poorly measured genes (genes with a ratio of 
signal intensity to background noise of 2 or less). Panel B 
shows an enlarged view of the sample dendrogram. 
Samples are color-coded according to the prognostically 
relevant cytogenetic groups, determined on the basis of 
conventional chromosome-banding and fluorescence in 
situ hybridization analysis. Three paired samples of pe-
ripheral blood and bone marrow from three patients are 
indicated by horizontal black bars. Panels C, D, E, F, G, 
H, and I show selected gene-expression features whose 
locations are indicated by the vertical colored bars. 
Owing to space limitations, only named genes (and 
not expressed-sequence tags) are indicated.
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karyotype, and 

 

FLT3

 

 mutations, as well as for the
newly defined subgroups within the t(8;21), inv(16),
and normal-karyotype groups (Fig. 1 and Supple-
mentary Appendix 4, available with the full text of
this article at www.nejm.org; and at www.ncbi.nlm.
nih.gov/geo/). In contrast, we identified no such
characteristic signatures for AML specimens with a
complex karyotype, 

 

MLL

 

 partial tandem duplica-

tions, and trisomy 8 (whose molecular heterogene-
ity has been reported

 

27

 

), though this may reflect our
limited statistical power owing to the small sizes of
the groups.

Among the group-specific signatures, we found
genes located at translocation breakpoints defin-
ing cytogenetic classes, including 

 

ETO

 

 in t(8;21)
and 

 

MYH11

 

 in inv(16) (described at www.ncbi.

 

Figure 2. Identification of Classes.

 

Panel A shows the sample dendrogram from the hierarchical cluster, with clinical, morphologic, and molecular genetic information assigned 
to the individual samples. Black boxes indicate the presence of the characteristic indicated; white boxes indicate the converse — that is, fe-
male sex, an age of 60 years or younger, a white-cell count of less than 100,000 per cubic millimeter, and a lactate dehydrogenase (LDH) level 
of 400 U per liter or less. Gray boxes — or blanks in the case of the French–American–British (FAB) subtype — indicate that no data were 
available. Age, white-cell count, and LDH are treated as binary variables, with the use of prognostically relevant cutoff values.

 

2

 

 Samples with 
a normal karyotype separated into two major subgroups, as indicated. Panel B shows a three-dimensional projection of the three principal 
components in a principal-components analysis of all AML samples, with the use of the 6283 variably expressed genes. Only the samples with 
a predominantly normal karyotype in subgroups I and II are shown, defined on the basis of hierarchical clustering. Samples are color-coded 
as indicated. Panel C shows the Kaplan–Meier estimates of overall survival in the two subgroups of patients with a normal karyotype; the dif-
ference between groups was significant (P=0.009 by the log-rank test). The X symbols in Panel C indicate censored data.
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nlm.nih.gov/geo/). We also identified numerous
other group-specific named genes and expressed-
sequence tags; the function of known genes sug-
gested plausible pathogenetic roles. For example,
the t(15;17) signature (partially shown in Fig. 1F)
included genes associated with abnormalities in
hemostasis (

 

PLAU, SERPING1, ANXA8,

 

 and 

 

PLAUR

 

),
resistance to apoptotic stimuli (

 

TNFRSF4, AVEN, 

 

and

 

BIRC5

 

), and impairment of retinoic acid–induced
cell differentiation (

 

TBLX1, CALR, 

 

and 

 

RARRES3

 

), as
well as detoxification of chemical compounds and
resistance to chemotherapy (

 

CYP2E1, EPHX1, MT1G,
MT1H, MT1L, MT2A,

 

 and 

 

MT3

 

).
Likewise, the t(8;21) signature (Fig. 1D) included

 

MLLT4

 

 (also known as 

 

AF6

 

), a recurrent fusion part-
ner of 

 

MLL

 

 in leukemias with t(6;11),

 

28

 

 suggesting
a possible shared mechanism contributing to leuke-
mogenesis. In specimens with inv(16), we found
high levels of expression of 

 

NT5E

 

 (5' nucleotidase,
also known as 

 

5NT

 

 or 

 

CD73

 

) (Fig. 1H), which has
been associated with resistance to cytarabine in
AML.

 

29

 

 This finding is somewhat surprising, since
AML with inv(16) is clinically quite sensitive to cy-
tarabine.

 

4

 

 In contrast to childhood acute lympho-
blastic leukemia,

 

17

 

 in AML, the expression of puta-
tive pathogenic homeobox genes, including 

 

HOXA4,
HOXA9, HOXA10, PBX3,

 

 and 

 

MEIS1

 

 (some of which
are shown in Fig. 1E), was not limited to specimens
with 

 

MLL

 

 translocations but also characterized many
specimens with normal and complex karyotypes.

Among the subtypes in which the normal kary-
otype predominated, group I was characterized by
a high level of expression of 

 

GATA2, DNMT3A,

 

 and

 

DNMT3B

 

 (Fig. 1C). The transcriptional regulator

 

GATA2

 

 is required for 

 

NOTCH1

 

 signaling-induced
inhibition of hematopoietic differentiation.

 

30

 

 Con-
sistent with this finding, many group I specimens
also had elevated 

 

NOTCH1

 

 expression. The high lev-
el of expression of 

 

DNMT3A

 

 and 

 

DNMT3B among
group I specimens also suggests a potential role of
aberrant patterns of methylation31 in the pathogen-
esis of this subtype.

AML specimens in group II were characterized
in part by a prominent gene-expression feature
(Fig. 1G) associated with granulocytic or monocyt-
ic differentiation and the immune response. A can-
didate pathogenetic gene within this subgroup was
the gene for vascular endothelial growth factor
(VEGF), which is involved in the regulation of hema-
topoietic-stem-cell survival32 and in the progres-
sion of AML33 (Fig. 1I).

outcome prediction
Having demonstrated the presence at diagnosis of
gene-expression signatures correlating with the
clinical outcome (Fig. 2C), we next sought to con-
struct a gene-expression–based outcome predictor
for AML. Both supervised and unsupervised strate-
gies have been proposed as means of identifying
outcome predictors with the use of DNA-microarray
data. Unsupervised cluster analysis based on genes
whose expression varies (or on a subgroup of gene-
expression features) has been used to define prog-
nostically relevant tumor subtypes that might form
the basis for outcome prediction.13,34 In our AML
data set, however, the clustering of samples was
driven in large part by underlying cytogenetic aber-
rations, and thus except for the normal-karyotype
subgroups, such a gene-expression–based outcome
predictor would be unlikely to provide additional
information independent of cytogenetic findings.
Supervised analyses have also been used to identify
genes whose expression correlates with the likeli-
hood of recurrent disease or survival (as binary out-

Figure 3. Overview of the Strategy Used for the Development and Validation 
of an Outcome Predictor Based on Gene-Expression Signatures.

SAM denotes significance analysis of microarrays, and PAM prediction analy-
sis of microarrays.

Training set
(n=59)

Test set
(n=57)

116 AML samples
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come variables)15,17,35,36 or the duration of surviv-
al.37 However, the likelihood and the duration of
survival are likely to be fairly crude surrogates for the
underlying biologic characteristics distinguishing
prognostically relevant tumor subclasses (see Sup-
plementary Appendix 5, available with the full text
of this article at www.nejm.org), and indeed this
approach was not very accurate in predicting the
clinical outcome in our data set (not shown).

Therefore, we instead devised a strategy for out-
come prediction that combined the strengths of su-
pervised and unsupervised approaches (Fig. 3). The
idea was to try to identify the prognostically relevant,
underlying biologic subclasses. First, we randomly
classified AML samples into separate training and
test sets. In the training set, we used a supervised
analysis (the SAM method) to identify genes whose
expression correlated with the duration of survival.
Next, we used these genes in an unsupervised cluster
analysis to determine the underlying, prognostically
relevant AML classes (i.e., good and poor outcomes)
in the training set. We then devised a cross-validated
gene-expression predictor for these cluster-defined
outcome classes, using the prediction analysis of
microarrays (PAM)25 method based on nearest
shrunken centroids. We then validated this class
predictor, comprising 133 unique genes (represent-
ed by 149 cDNAs) (Fig. 4A and www.ncbi.nlm.nih.
gov/geo/), by using it to predict which outcome class
samples in the independent test set would be in-
cluded.

To predict outcome class in the test set, we per-
formed hierarchical clustering using the 133 pre-
dictive genes, which yielded a cluster of samples
with gene-expression profiles that were highly cor-
related with the good-outcome group and a cluster
with profiles that were highly correlated with the
poor-outcome group in the training set (P<0.001)
(Fig. 4B and Supplementary Appendix 6, available
with the full text of this article at www.nejm.org).
The cluster-defined subgroup of samples having the
poor-outcome signature was associated with signif-
icantly shorter survival than was the subgroup of
samples with the good-outcome signature (P=0.006
by the log-rank test) (Fig. 4C). Notably, when we
applied the same procedure to the subgroup of 22
AML samples with a normal karyotype, it also
identified good-outcome and poor-outcome class-
es associated with significant differences in over-
all survival (P=0.046 by the log-rank test) (Fig. 4D).
A strong correspondence was observed between
samples represented in our group I and group II

subtypes and samples predicted to have a poor and
a good outcome, respectively (P<0.001 by the chi-
square test).

The preceding method required a group of test
samples in order to predict, by means of cluster
analysis, the outcome class for individual patients.
Because it is useful clinically to predict the outcome
for individual patients who are not part of a test
group, we also evaluated a procedure to predict the
outcome class of individual test samples, based on
the PAM method of nearest shrunken centroids.25

Each test-set sample was individually assigned to
an outcome class by determining whether its gene-
expression signature across the 133 predictive genes
was more highly correlated with the average (cen-
troid) good-outcome signature or with the average
poor-outcome signature in the training set. With the
use of this procedure, the subgroup of samples pre-
dicted to have a poor outcome was associated with
significantly shorter survival than the subgroup of
samples predicted to have a good outcome (P=0.034
by the log-rank test) (Supplementary Appendix 7,
available with the full text of this article at www.
nejm.org). However, when we used this method on
AML samples with a normal karyotype, we found

Figure 4 (facing page). Outcome Prediction.

In Panel A, columns represent AML samples in the training 
set ordered according to k-means clustering (a nonhier-
archical computational method of organizing clusters); 
rows represent the 149 predictive complementary DNAs 
(cDNAs), ordered according to hierarchical clustering. 
Mean-centered ratios of gene expression are depicted by 
a log-transformed (on a base 2 scale) pseudocolor scale; 
gray denotes poorly measured genes. Good-outcome 
and poor-outcome subgroups were identified by means 
of Kaplan–Meier analysis. In Panel B, columns represent 
AML samples in the test set ordered according to hierar-
chical clustering; rows represent the 149 predictive com-
plementary DNAs, ordered according to hierarchical 
clustering. Good-outcome and poor-outcome sub-
groups were defined by correlating gene-expression sig-
natures with those in the training set (see text). Vertical 
bar (left) indicates genes that were expressed in the 
good-outcome subgroup (blue) or the poor-outcome 
subgroup (red) in the training set. Panel C shows Kap-
lan–Meier survival estimates in the cluster-defined poor-
outcome and good-outcome subgroups of samples; 
there was a significant difference between groups 
(P=0.006 by the log-rank test). Panel D shows the same 
Kaplan–Meier analysis as shown in Panel C, except the 
analysis is restricted to AML samples in the test set with 
a normal karyotype. The X symbols in Panels C and D in-
dicate censored data.
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no significant difference in overall survival (P=0.65
by the log-rank test), which may reflect the relatively
small sample or an inherently poorer performance
of this alternative approach to outcome prediction.

To determine whether the gene-expression out-
come predictor added prognostic information over
and above that provided by known prognostic fac-
tors, we performed multivariate proportional-haz-
ards analysis. Using the cluster-defined outcome-
class labels (Fig. 4B and www.ncbi.nlm.nih.gov/
geo/), we found that the gene-expression predictor
provided significant prognostic information (odds
ratio, 8.8; 95 percent confidence interval, 2.6 to
29.3; P<0.001) that was independent of other risk
factors determined to be significant in the model:
antecedent hematologic disorder (odds ratio, 10; 95
percent confidence interval, 2.8 to 37.2; P<0.001),
combined intermediate- and high-risk cytogenetics
groups (P=0.004), and FLT3 mutations (odds ratio,
3.0; 95 percent confidence interval, 1.2 to 7.7;
P=0.03). Using the nearest centroid-defined class
labels, we obtained similar results (available at www.
ncbi.nlm.nih.gov/geo/). When samples with a nor-
mal karyotype were excluded, the gene-expression
predictor was still a significant variable, demon-
strating that it is not only capturing the survival dis-
tinction among AML specimens with a normal kary-
otype, but also providing additional prognostic
information for specimens with a non-normal kary-
otype (data not shown).

The 133-gene outcome predictor included sev-
eral named genes with potential pathogenic rele-
vance. Genes associated with favorable outcome
included the forkhead box O1A gene (FOXO1A, also
known as FKHR), which is involved in the arrest of
the cell cycle and the regulation of apoptosis.38 In-
terestingly, other members of the forkhead family
have been identified as pathogenic translocation
fusion partners with MLL in acute leukemias, and a
synthetic fusion of MLL with FOXO1A has recently
been shown to transform hematopoietic progenitor
cells in vitro.39

Notably, among the genes associated with a poor
outcome, several (e.g., MAP7, GUCY1A3, TCF4, and
MSI2) (some of which are shown in Fig. 1C) were
coexpressed within a single-gene expression fea-
ture in our unsupervised hierarchical cluster, sug-
gesting the possibility of a coregulated physiologi-
cal process or pathway with pathogenetic relevance.
The association of the overexpression of HOXB2,
HOXB5, PBX3, HOXA4, and HOXA10 with a poor out-
come supports the concept that homeobox-gene

dysregulation has a role in leukemogenesis.40 In-
deed, overexpression of HOXA10 has been shown
to perturb myeloid and lymphoid differentiation
profoundly in hematopoietic cells in mice and to
lead to AML.41 Interestingly, elevated expression of
FLT3 was also associated with a poor outcome. Ac-
tivating FLT3 mutations are predictive of a poor
outcome in AML,8,9 but we found no correlation
between the levels of FLT3 expression and FLT3 mu-
tational status in our AML sample set (P=0.57 by
Student’s t-test). This finding suggests that in-
creased expression of wild-type FLT3 may function-
ally mimic mutational activation and contribute to
the pathogenesis of poor-outcome AML.

We found that AML samples with a normal karyo-
type separated into two subgroups based on distinct
patterns of gene expression revealed by unsuper-
vised hierarchical clustering and principal compo-
nent analysis. The unequal distribution of FLT3 mu-
tations and FAB morphologic subtypes between
groups with different outcomes supports the con-
cept that distinct biologic changes underlie the clin-
ical phenotype. The identification of these new sub-
groups suggests that the use of gene-expression
profiling can improve the accuracy of the molecu-
lar classification of AML and that the study of the
genes that are differentially expressed in the two
subgroups will help identify the distinct pathways
involved in the molecular pathogenesis of AML with
a normal karyotype.

Using hierarchical clustering, we also found that
samples with t(8;21) and inv(16) each separate into
different subgroups. Since the primary transloca-
tion events themselves are not sufficient for leuke-
mogenesis,42 the distinct patterns of gene expres-
sion found within each of these cytogenetic groups
may lead to the identification of cooperating muta-
tions and dysregulated pathways that eventuate in
transformation. Analysis of additional samples will
be required to determine the biologic and clinical
relevance of these putative subgroups. Nevertheless,
the value of unsupervised analytic methods is worth
noting, since this molecular heterogeneity was not
apparent in the supervised analysis.43

Our gene-expression study has provided numer-
ous insights into the pathogenesis of AML, includ-
ing, for example, the role of homeobox-gene dys-
regulation.40 Our finding that HOXA4, HOXA9,
HOXA10, PBX3, and MEIS1 are coexpressed across

discussion
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diverse cytogenetic groups (e.g., AML specimens
with 11q23 aberrations, specimens with a normal
karyotype, and specimens with a complex karyo-
type) suggests a coregulated pathway with patho-
genetic relevance in a subgroup of AML. Coexpres-
sion of HOXA9 and MEIS1, which is sufficient for
the transformation of bone marrow cells in mice,44

has also recently been observed in children with
acute lymphoblastic leukemia with MLL rearrange-
ments,16,17 suggesting a possible shared patho-
genic mechanism in acute myeloid and lymphoid
leukemias. The pathogenetic relevance of the ex-
pression of the homeobox genes, as well as numer-
ous other genes, in the data set remains to be ex-
plored.

We also developed an algorithm combining su-
pervised and unsupervised approaches to identi-
fy a clinical outcome predictor based on gene ex-
pression, which we validated in an independent set
of AML samples. The gene-expression predictor
defined good-outcome and poor-outcome sub-
groups with significant differences in overall sur-
vival, whether they were applied to AML samples
encompassing all cytogenetic groups or (for the
cluster-derived classes) only to AML samples with a
normal karyotype. The latter finding suggests the
prognostic usefulness of the approach in this im-
portant class of intermediate-risk patients.

In multivariate analysis we found that the gene-
expression outcome-class predictor provided prog-
nostic information over and above that provided by

known prognostic indicators. Therefore, our data
suggest that outcome prediction can be optimized
through the use of a combination of prognostic
markers, including a gene-expression–based pre-
dictor. Although our patients were treated according
to two distinct protocols involving various treat-
ments, the protocols were based on a state-of-the-
art strategy of intensive treatment, and it is there-
fore reasonable to expect that our findings can be
extrapolated to current treatment protocols. Of
course, it will be important to refine and validate our
gene-expression predictor in a larger, independent
set of AML samples and in a prospective cohort of
patients before its routine implementation in clini-
cal practice. Further studies will also be required to
determine the ability of this predictor to classify
risk in individual patients with AML. Nonetheless,
our data support the theory that prognostic gene-
expression signatures are present at diagnosis in
the bulk population of leukemic cells and that the
use of gene-expression profiling will improve mo-
lecular classification and outcome prediction in
adult AML.
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